Densification of Wood Veneers Combined with Oil- Heat Treatment. Part Ii: Hygroscopicity and Mechanical Properties
نویسندگان
چکیده
In an effort to achieve high mechanical performance and improved dimensional stability, densification combined with oil-heat treatment (OHT) was performed. In our previous study, OHT was successfully applied to densified veneer, which resulted in improved dimensional stability. In the present study, the impact of OHT on densified wood veneer hygroscopicity and mechanical properties was determined. OHT at 180, 200, and 220oC for 1, 2, and 3 hours was applied to densified Aspen (Populus tremuloides) veneers. OHT was found to be an efficient treatment to reduce the hygroscopicity of densified aspen veneers, although OHT had a negative impact on Brinell hardness. However, due to the contribution of densification, the hardness of oil-heat treated veneers was still two to three times higher than that of non-densified veneers. Similar results were found for tensile strength. Bending strength increased slightly at low OHT temperature, and then decreased at high temperature. Bending strength of oil-heat treated densified veneer samples was higher than that of non-densified ones. No significant effect of OHT was found on tensile MOE, but bending MOE increased after OHT. Compared to OHT duration, OHT temperature had a larger impact on densified wood hygroscopicity and mechanical properties.
منابع مشابه
Densification of Wood Veneers Combined with Oil- Heat Treatment. Part I: Dimensional Stability
Although wood densification by compression improves wood mechanical strength, dimensional stability is often a problem due to compression recovery. Alternatively, oil-heat treatment (OHT) improves wood dimensional stability and enhances resistance to biological attack. This study examined combined wood densification and OHT. Large wood veneer 700 × 700 mm specimens prepared with aspen (Populus ...
متن کاملThe Influence of Short-term Thermo- Mechanical Densification on the Surface Wettability of Wood Veneers
The study investigated the effects of short-term thermo-mechanical (STTM) densification temperature and pressure on changes in surface wettability of alder (Alnus glutinosa), beech (Fagus sylvatica), birch (Betula verrucosa) and pine (Pinus sylvestris) wood veneer. Veneer sheets were densified using pressure levels of 4 MPa, 8 MPa and 12 MPa at three temperatures: 100°C, 150°C and 200°C for a s...
متن کاملEffects of Heat Post-Treatment on Dimensional Stability and Water Absorption Behaviours of Mechanically Densified Uludağ Fir and Black Poplar Woods
One of the most persistent problems with mechanically densified wood is its inherent dimensional instability. The effects of heat post-treatment on the changes in spring-back (SB), compression ratio recovery (CRR), thickness swelling (TS), and water absorption (WA) of newly-tested Uludağ fir (Abies bornmuelleriana Mattf.) and black poplar (Populus nigra L.) wood samples that had been thermo-mec...
متن کاملEffects of Temperature and Duration of Heat Treatment on the Physical, Surface, and Mechanical Properties of Japanese Cedar Wood
This study investigated the application of heat to wood samples from Japanese cedar trees (Cryptomeria japonica) of small and medium diameters to evaluate the effects of both the temperature and duration of treatment on its surface, physical, and mechanical properties. The results indicate that the density, moisture content, and hygroscopicity of the wood samples decreased as the treatment temp...
متن کاملModeling of moisture diffusion and heat transfer during softening in wood densification
Mechanical densification of wood involves compressing the wood in radial direction using heat, water and steam to produce a higher density surface exhibiting better mechanical properties. The densified wood is an environmentally friendly product that presents new opportunities for the wood products industry. Wood surface densification involves both soaking and heating. The objective of this stu...
متن کامل